Thermal Management Thermal Characteristics of LEDs

Increasing **LED Junction Temperature**

Relative Lichtstrom^{2) Seite 18} Relative Luminous Flux^{2) page 18}

 $\Phi_{\rm V}$

Forward Voltage \downarrow

Temperaturkoeffizient von V_{F}	(typ.)	TC_V	-4.0	mV/K
Temperature coefficient of V _F				
<i>I</i> _F = 350 mA; −10°C ≤ <i>T</i> ≤ 100°C				

Color Coordinates \downarrow

Temperaturkoeffizient von x Temperature coefficient of x $I_F = 350 \text{ mA}; -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$	(typ.)	TC _x	-0.1	10 ⁻³ /K
Temperaturkoeffizient von y Temperature coefficient of y $I_F = 350 \text{ mA}; -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$	(typ.)	<i>TC</i> _y	-0.2	10 ⁻³ /K

Characteristics of LED

Thermal Management Thermal Characteristics of LW W5SG

LW W5SG

Kennwerte Characteristics $(T_{A} = 25 \text{ °C})$

Bezeichnung Parameter		Symbol Symbol	Wert Value	Einheit Unit
Temperaturkoeffizient von x Temperature coefficient of x $I_F = 350 \text{ mA}; -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$	(typ.)	TC _x	-0.1	10 ⁻³ /K
Temperaturkoeffizient von y Temperature coefficient of y $I_F = 350 \text{ mA}; -10^{\circ}\text{C} \le T \le 100^{\circ}\text{C}$	(typ.)	TCy	-0.2	10 ⁻³ /K
Temperaturkoeffizient von V_F Temperature coefficient of V_F I_F = 350 mA; -10°C $\leq T \leq$ 100°C	(typ.)	TC_{\vee}	-4.0	mV/K

Grenzwerte Maximum Ratings

Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit
Betriebstemperatur Operating temperature range	T _{op}	- 40 + 100	°C
Lagertemperatur Storage temperature range	T _{stg}	- 40 + 100	°C
Sperrschichttemperatur Junction temperature	Tj	125	°C
Leistungsaufnahme Power consumption $(T_{A}=25^{\circ}C)$	P _{tot}	2.3	W
Wärmewiderstand ^{4) Seite 18} Thermal resistance ^{4) page 18} Sperrschicht/Lötpad Junction/solder point	R _{th JS}	9	K/W

Thermal Management Failure Mode of LEDs

Maximal zulässiger Durchlassstrom Max. Permissible Forward Current $I_F = f(T_c)$

Forward Current > max. allowed I_F

- high current density
- Iocal thermal overstress
- Iocal damage of junction
- growth of non-radiative recombination centres

Strong Light Degradation

Junction temperature > max. allowed T_i

- high mechanical stress on die and wire bond due to thermal expansion within temperature cycles
- open contact between die/leadframe, die/ball bond and broken bond wire may occure

Catastrophic Failure

Thermal Management Objective of Thermal Management

Ensuring LED's reliable operation with no catastrophic failure.

By preventing LEDs from exceeding the maximum permissible junction temperature.

Ensuring LED's life time with no significant early degradation.

By preventing LEDs from being over-driven within the required ambient temperature range.

Optimizing LED's optical performance.

By driving the LEDs at the maximum possible current within the required ambient temperature range.

Thermal Management for LEDs

Heat transfer to the surrounding environment by conduction, convection and radiation

Thermal Management Heat Transfer Modes

Thermal Management

Heat Transfer from the die to the surrounding environment by conduction, convection and radiation.

Thermal Management Strategy

Cooling Technology

Packaging / Module Related

 $\mathsf{R}_{\mathsf{th}\,\mathsf{JS}}$

$R_{\text{th SB}}$

Thermal Spreader Materials Package Geometry

Substrate Technology Thermal Vias

Thermal Vias Heat Spreader

System Related

 $R_{\text{th BA}}$

Velocity Heat Fins

Special Techniques

 $R_{\text{th BA}}$

Thermoelectric Heat Pipes Fluid Cooling

Thermal Management Thermal Resistance

- Thermal resistance is a mathematical concept analogous to the electrical resistance
- "The temperature difference between isothermal surfaces divided by the heat that flows between them is the thermal resistance of the material enclosed between the two isothermal surfaces and the flux tube originating and ending on the boundaries of these two isothermal surfaces. (one dimensional heat conduction)"
- The thermal resistance can also defined as a temperature difference between two reference points divided by the heat
- Definitions:
 - T temperature at boundaries [°C]
 - λ thermal conductivity [Wm⁻¹K⁻¹]
 - Q heat flow [W]
 - t thickness [m]
 - A cross section area [m²]

Thermal Management Resistance Analogy

Thermal Management Thermal System Configuration

Thermal Management Thermal Resistance Rth_{JA}

- Based on test environment similar to JEDEC Standard 51 in natural convection (still air)
- The intent of R_{thJA} measurements is solely for a thermal performance comparison of one package to another in a standardized environment.
- This metrology is not meant to and will not predict the performance of a package in an application-specific environment.

Thermal Resistance Rth_{JA}

Value should be used with great caution. Usually gives the wrong answer due to differences between the standard and application environment.

Thermal Management Thermal Resistance Rth_{JA}

T _{amb} = 85 ℃	$P_{\rm D} = 0.3 {\rm W}$	$I_J = 110 \frac{W}{W}$.
Thermal Si	mulation	Estimation v
	T _{junc} = 128 ℃	Es

			LA G67F		
Grenzwerte Maximum Ratings					
Bezeichnung Parameter	Symbol Symbol	Wert Value	Einheit Unit		
Wärmewiderstand Thermal resistance					
Sperrschicht/Lötpad Junction/soldering point	R _{th JS}	60	K/W		
$T_{amb} = 85 \ \ C \qquad P_D =$	= 0.3 W				
$R_{thJA} = \frac{T_J - T_A}{P} T_J = R_{thJA} \cdot P + T_{amb}$					
$T_J = 110 \frac{K}{W} \cdot 0.3W$	+ 85°C	;=118°0	C		
Estimation with R	thJA				

Estimated T_{junc} = 118 ℃

OSRAM

Thermal Management Thermal System Configuration

Thermal Management Internal Thermal Resistance Rth_{JS}

Thermal Resistance Rth_{JS}

Mainly defined by package construction, e.g. geometry, material selection. Cannot by changed by the customer

Thermal Management Thermal Package Performance

Thermal Management Thermal System Configuration

Thermal Management External Thermal Resistance Rth_{SB}

Thermal Resistance Rth_{SB}

Considering the heat transfer trough and within the printed circuit board. The value is application specific.

Thermal Management Thermal Resistance of Board Material

	Board Material	Rth _{sB}
Copper; t = 35 μm Dielectric; t = 100 μm Aluminium; Plate t = 1.5 mm	IMS with enhanced dielectric IMS with FR4 dielectric	3.5 K/W 7.3 K/W
Copper; t = 35 μm Dielectric PEN; t = 50 μm PSA; t = 50 μm Aluminium; Plate t = 1.5 mm	Flexible PCB on AI with standard PSA Flexible PCB on AI with enhanced PSA	9.5 K/W 7.6 K/W

Thermal Management Estimate Thermal Resistance Rth_{JB} for single LED

 The general equation for thermal serial resistances is:

$$\mathsf{R}_{th_{total}} = \sum_{i=1}^{\mathsf{N}} \mathsf{R}_{th_i}$$

 For a single LED mounted on a substrate the R_{thJB} is:

$$\mathsf{R}_{\mathsf{thJB}} = \mathsf{R}_{\mathsf{thJS}} + \mathsf{R}_{\mathsf{thSB}}$$

 The total thermal resistance R_{thJA} is the sum of components:

$$\mathbf{R}_{\mathrm{thJA}} = \mathbf{R}_{\mathrm{thJS}} + \mathbf{R}_{\mathrm{thSB}} + \mathbf{R}_{\mathrm{thBA}}$$

Thermal Management Estimate Thermal Resistance Rth_{JB} for multiple LEDs

 The general equation for thermal parallel resistances is:

$$\frac{1}{R_{th_{total}}} = \sum_{i=1}^{N} \frac{1}{R_{th_i}}$$

• For multiple LEDs the equation is:

$$\frac{1}{R_{thJB_{total}}} = \sum_{i=1}^{N} \frac{1}{R_{thJS_i} + R_{thSB_i}}$$

For equivalent parallel thermal resistances:

$$R_{thJB_{total}} = \frac{R_{thJS} + R_{thSB}}{N}$$

Thermal Management Thermal System Configuration

Thermal Management External Thermal Resistance Rth_{BA}

Influencing Factors

- Attach heat sink
- Attach the board housing surface
- Choose housing material with high thermal conductivity
- Use of active cooling (fan)

Thermal Resistance Rth_{BA}

Characterize the heat transfer from the board to the surrounding environment. This value is also application specific.

Thermal Management Heat Sinks

Influencing Factors

- Air flow conditions
- Material of heat sink
- Orientation with respect to gravity
- Base plate thickness
- Cross sectional geometry
- Fin geometry
- Number of fins
- Spacing of fins

Thermal Resistance Rth_K

Characterize the heat transfer from heat sink to the surrounding environment. This value is also application specific.

Thermal Management Heat Sink Characteristics

Thermal Resistance R_{thK}

- There are no agreed international standard methods for determination of the thermal resistance.
- The diagrams and values have been determined under practical operation conditions
- The values indicated in the diagrams apply only for heat sinks with black anodised surface mounted vertically and natural convection

Correction factors: Natural surface: +10 to 15 % For horizontal mounting: +15 to 20 %

Thermal Management Heat Sink Selection

Thermal Management Reference Information

OSRAM Opto Semiconductors Application Notes

- "Thermal Management of SMT LED"
- "Thermal Management of Golden DRAGON LED"
- "Temperature Measurement with Thermocouples"

Websites about Electronic Thermal Management

www.coolingzone.com www.mhtl.uwaterloo.ca www.electronics-cooling.com

